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Abstract
The volume of the quantum mechanical state space over n-dimensional
real, complex and quaternionic Hilbert spaces with respect to the canonical
Euclidean measure is computed, and explicit formulae are presented for the
expected value of the determinant also in the general setting. The case when
the state space is endowed with a monotone metric or a pull-back metric is also
considered; we give formulae for the volume of the state space with respect to
the given Riemannian metric. We present the volume of the space of qubits
with respect to various monotone metrics. It turns out that the volume of the
space of qubits can also be infinite. We characterize those monotone metrics
which generate infinite volume.

PACS numbers: 02.40.−k, 03.65.−w
Mathematics Subject Classification: 53C20, 81Q99

Introduction

The classical Jeffreys’ prior is the square root of the determinant of the classical Fisher
information matrix, up to a normalization constant. Analogously, the quantum mechanical
counterpart of the Jeffreys’ prior is the square root of the determinant of the quantum Fisher-
information matrix. In the quantum mechanical case, one can endow the state space with
different Riemannian metrics. Some of them are the monotone metrics, which can be labelled
by special operator monotone functions. For each metric one has a Jeffreys’ prior, so it is not
unique as in the classical case. Different kinds of generalizations of the classical Jeffreys’
prior lead to a different quantum mechanical Jeffreys’ prior. This prior was widely examined
by Slater if the metric is the Bures metric [19–24]. In this paper we compute the volume of
the state space with respect to the Lebesgue measure, we give general formulae for the volume
for monotone and pull-back metrics too and we characterize those monotone metrics which
generate infinite volume of the state of qubits.
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In the first section, we fix the notations for further computations and we mention some
elementary lemmas which will be used in the following. In the second section, we compute
the volume of the quantum mechanical state space over n-dimensional real, complex and
quaternionic Hilbert spaces with respect to the canonical Euclidean measure. Before these
general computations, we compute the volume of the state space over the three- and four-
dimensional real Hilbert spaces to give insight into the general computational method. We
explicitly present the expected value of the determinant in the general setting. Zyczkowski
and Sommers gave a formula for the volume of the complex state space when it is endowed
Hilbert–Schmidt measure [28]. We show that their result, which is based on the theory of
random matrices, is fully compatible with the presented one up to a normalization constant.
In the third section, we consider the case when the state space is endowed with a monotone
metric or a pull-back metric, and we give formulae to compute the volume of the state space
with respect to the given Riemannian metric. Finally, in the fourth section we deal with the
qubit case. We present the volume of this space with respect to various monotone metrics. It
turns out that the volume of the space of qubits can also be infinite. We characterize those
monotone metrics which generate infinite volume. The more technical proofs can be found in
the appendix.

1. Basic lemmas and notations

The quantum mechanical state space consists of real, complex or quaternionic self-adjoint
positive matrices with trace 1. The state D is called a faithful state if every eigenvalue of D is
strictly positive, or equivalently D > 0. We consider only the set of faithful states with real,
complex and quaternionic entries:

MR

n = {X ∈ M(n, R) | X = X∗, X > 0, Tr X = 1}
MC

n = {X ∈ M(n, C) | X = X∗, X > 0, Tr X = 1}
MH

n = {X ∈ M(n, H) | X = X∗, X > 0, Tr X = 1}.
The dimension of these state spaces are

dimMR

n = (n − 1)(n + 2)

2
dimMC

n = n2 − 1 dimMH

n = 2n2 − n − 1.

The following lemmas will be our main tools; we will use them without mentioning and
will also introduce some notations which will be used in the following.

The first lemma is about some elementary properties of the gamma function �.

Lemma 1. Consider the function �, which can be defined for z ∈ R
+ as

�(z) =
∫ ∞

0
t z−1 e−t dt.

This function has the following properties for every natural number n �= 0 and real argument
z ∈ R

+:

�(n) = (n − 1)! �(1 + z) = z�(z) �(1/2) = √
π

�(n + 1/2) = (2n − 1)!!

2n

√
π �(n/2) = (n − 2)!!

2
n−1

2

√
π.

For an n × n matrix A we set Ai to be the left upper i × i submatrix of A, where
i = 1, . . . , n. The next two lemmas are elementary proposition in linear algebra.

Lemma 2. The n × n self-adjoint matrix A is positive definite if and only if the inequality
det(Ai) > 0 holds for every i = 1, . . . , n.
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Lemma 3. Assume that A is an n×n matrix with entries x (x ∈ R) and B is a diagonal matrix
with the elements Bjj on the main diagonal, then

det(A + B) = det(B) + x

n∑
i=1

n∏
j=1
j �=i

Bjj .

Lemma 4. Assume that A is an n × n self-adjoint, positive definite matrix with entries
(aij )i,j=1,...,n and the vector x consists of the first (n − 1) elements of the last column, that is,
x = (a1,n, . . . , an−1,n). Then for the matrix T = det(An−1)(An−1)

−1, we have

det(A) = ann det(An−1) − 〈x, T x〉.

Proof. For elementary matrix computation, one should expand det(A) by minors, with respect
to the last row. �

Lemma 5. For parameters a, b ∈ R
+ and t ∈ R

+ the integral equalities∫ t

0
xa(t − x)b dx = t1+a+b �(a + 1)�(b + 1)

�(a + b + 2)

Ga,b :=
∫ 1

0
xa(1 − x2)b dx = 1

2

�(b + 1)�
(

a+1
2

)
�
(

a
2 + b + 3

2

)
hold.

Proof. These are consequences of the formula below for the beta integral∫ 1

0
xp(1 − x)q dx = �(p + 1)�(q + 1)

�(p + q + 2)
.

�

Lemma 6. The surface Fn−1 of a unit sphere in an n-dimensional space is

Fn−1 = nπ
n
2

�
(

n
2 + 1

) .
Proof. It follows from the well-known formula for the volume of the sphere in n-dimension
with radius r:

Vn(r) = rnπ
n
2

�
(

n
2 + 1

) ,
since Fn−1 = dVn(r)

dr

∣∣
r=1. �

When we integrate on a subset of the Euclidean space, we always integrate with respect
to the usual Lebesgue measure. The Lebesgue measure on R

n will be denoted by λn.

Lemma 7. Consider the simplex

�n−1 =
{

(x1, . . . , xn) ∈ ]0, 1[n
∣∣∣∣

n∑
k=1

xk = 1

}
,

then ∫
�n−1

(
n∏

i=1

xi

)k

dλn−1(x) = �(k + 1)n

�(n(k + 1))
.
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Proof. The integral can be computed as∫
�n−1

(
n∏

i=1

xi

)k

dλn−1(x) =
∫ 1

0

∫ 1−a1

0
. . .

∫ 1−∑n−2
j=1 aj

0

(
n−1∏
i=1

ak
i

)

×
[(

1 −
n−2∑
i=1

ai

)
− an−1

]k

dan−1 . . . da2 da1.

Integrating with respect to an−1, the integral is

�(k + 1)�(k + 1)

�(2k + 2)
ak

1a
k
2 · · · ak

n−2((1 − a1 − · · · − an−3) − an−2)
2k+1

and in general, the ith integral is

�(k + 1)�(ik + i)

�((i + 1)(k + 1))
ak

1a
k
2 · · · ak

n−1−i ((1 − a1 − · · · − an−2−i ) − an−1−i )
(i+1)k+i .

Thus, the result is

�(k + 1)�(k + 1)

�(2k + 2)

�(k + 1)�(2k + 2)

�(3k + 3)

�(k + 1)�(3k + 3)

�(4k + 4)
× · · ·

× �(k + 1)�((n − 1)(k + 1))

�(n(k + 1))
= �(k + 1)n

�(n(k + 1))
.

�

Lemma 8. Assume that T is an n × n self-adjoint, positive definite matrix and k, ρ ∈ R
+. Set

ER

n (T , ρ) = {x ∈ R
n | 〈x, T x〉 < ρ}, Tij ∈ R;

EC

n (T , ρ) = {x ∈ C
n | 〈x, T x〉 < ρ}, Tij ∈ C;

EH

n (T , ρ) = {x ∈ H
n | 〈x, T x〉 < ρ}, Tij ∈ H;

then ∫
ER

n (T ,ρ)

(ρ − 〈x, T x〉)k dλn(x) = ρ
n
2 +k

√
det(T )

Fn−1Gn−1,k,

∫
EC

2n(T ,ρ)

(ρ − 〈x, T x〉)k dλ2n(x) = ρn+k

det(T )
F2n−1G2n−1,k,

∫
EH

4n(T ,ρ)

(ρ − 〈x, T x〉)k dλ4n(x) = ρ2n+k

det(T )2
F4n−1G4n−1,k.

Proof. We prove the statement for the real case only; the other cases can be proved in the
same way. The set ER

n (T , ρ) is an n-dimensional ellipsoid, so to compute the integral first we
transform our canonical basis to a new one, which is parallel to the axes of the ellipsoid. Since
this is an orthogonal transformation, its Jacobian is 1. When we transform this ellipsoid to a
unit sphere, the Jacobian of this transformation is

n∏
k=1

√
ρ

µk

,

where (µk)k=1,...,n are the eigenvalues of T. Then we compute the integral in spherical
coordinates. The integral with respect to the angles give the surface of the sphere Fn−1r

n−1,
and the radial part is∫ 1

0
Fn−1r

n−1

√
ρn

det(T )
(ρ − ρr2)k dr. �
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2. Volume of the state space with respect to the Lebesgue measure

Before investigating the general setting, we compute the volume of the spaces MR

3 and MR

4 .
For a matrix with real entries

A =

a f h

f b g

h g c




we set A1 = (a), A2 = (
a

f

f

b

)
, A3 = A and D denotes the matrix, which contains only

the diagonal elements of A, that is Dij = δijAii . The matrix A is in MR

3 if and only if the
following set of inequalities hold:

det(A1) = a > 0 a + b + c = 1

det(A2) = ab − f 2 > 0

det(A3) = abc + 2fgh − h2b − g2a − f 2c > 0.

These inequalities can be rewritten as

(a, b, c) ∈ �2, 〈(f ), T1(f )〉 < b det(A1), 〈(h, g), T2(h, g)〉 < c det(A2),

where Ti = det(Ai)A
−1
i for i = 1, 2. It means that for fixed D and A2 the parameters (h, g)

are in ER

2 (T2, c det(A2)). We set V (A2) to be equal to the volume of the parameter space of
(h, g) if D and A2 are given, that is,

V (A2) =
∫

ER

2 (T2,c det(A2))

1 dg dh = c det(A2)√
det(T2)

π

�(2)
= πc

√
det(A2).

If D and A1 are fixed, then we set V (A1) to be equal to the volume of the parameter space
(f, g, h):

V (A1) =
∫

ER

1 (T1,b det(A1))

V (A2) df =
∫ √

ab

−√
ab

πc
√

ab − f 2 df = π2

2
abc.

Finally, the volume of the MR

3 space is

V
(
MR

3

) =
∫

�2

V (A1) dλ2 = π2

2

∫ 1

0

∫ 1−a

0
ab(1 − a − b) db da = π2

240
.

A 4 × 4 real, symmetric matrix with diagonal elements a1, a2, a3 and a4 is an element of
the space MR

4 if and only if

det(A1) = a1 > 0
4∑

k=1

ak = 1

det(A2) = a2 det(A1) − 〈x1, T1x1〉 > 0

det(A3) = a3 det(A2) − 〈x2, T2x2〉 > 0

det(A4) = a4 det(A3) − 〈x3, T3x3〉 > 0.

We set Ti = det(Ai)A
−1
i for i = 1, 2, 3. For fixed parameters A3 and D,

V (A3) =
∫

ER

3 (T3,a4 det(A3))

1 dλ3 = a
3/2
4 F2G2,0

√
det(A3),

where we used the notation of the previous example; in this case V (A3) is the volume of the
space of those parameters which do not belong to A3 and D. Now assume that A2 and D are
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given, then

V (A2) =
∫

ER

2 (T2,a3 det(A2))

a
3/2
4 F2G2,0

√
det(A3) dλ2

= F2G2,0a
3/2
4

∫
ER

2 (T2,a3 det(A2))

(a3 det(A2) − 〈x, T2x〉) 1
2 dλ2(x)

= F2F1G2,0G1,1/2a
3/2
4 a

3/2
3 det(A2).

If D is given

V (A1) =
∫

ER

1 (T1,a2 det(A1))

F2F1G2,0G1,1/2a
3/2
4 a

3/2
3 det(A2) dλ1

= F2F1G2,0G1,1/2a
3/2
4 a

3/2
3

∫
ER

1 (T1,a2 det(A1))

(a2 det(A1)− 〈x, T1x〉) dλ1(x)

= F2F1F0G2,0G1,1/2G0,1(a1a2a3a4)
3/2.

Since ∫
�3

(a1a2a3a4)
3/2 dλ3(a) = �(3/2 + 1)4

�(10)
,

the volume of the four-dimensional real state space is

V
(
MR

4

) = F2F1F0G2,0G1,1/2G0,1
�(3/2 + 1)4

�(10)
= 3π4

8 · 9!
.

The rather technical proofs of the following theorems can be found in the appendix. The
idea behind the proofs can be understood by the above-mentioned examples.

Theorem 1. For every k ∈ N, the volumes of the state spaces MR

2k and MR

2k+1 are

V
(
MR

2k

) = πk2

2k2+k

(2k)!

k!(2k2 + k − 1)!

k−1∏
i=1

(2i)!

V
(
MR

2k+1

) =
(π

2

)k2+k (2k)!

(k − 1)!(2k2 + 3k)!

k−1∏
i=1

(2i)!.

Theorem 2. For every n ∈ N, the volume of the state space MC
n is

V
(
MC

n

) = π
n(n−1)

2

(n2 − 1)!

n−1∏
i=1

i!.

Theorem 3. For every n ∈ N, the volume of the state space MH
n is

V
(
MH

n

) = (2n − 2)!πn2−n

(2n2 − n − 1)!

n−2∏
i=1

(2i)!.

A slight modification of the proofs of the above-mentioned theorems gives the following
theorem.
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Theorem 4. For every parameter α ∈ R
+ and n ∈ N, the expected value of the function detα

on the state spaces MR
n ,MC

n and MH
n with respect to the normalized Lebesgue measures

µR, µC and µH are∫
MR

n

det(A)α dµR(A) = �
(

n2+n
2

)
�
(

n+1
2

) �
(

n+1
2 + α

)
�
(

n2+n
2 + nα

) n−1∏
i=1

�
(

i+1
2 + α

)
�
(

i+1
2

)
∫
MC

n

det(A)α dµC(A) = (n2 − 1)!

(n − 1)!

�(n + α)

�(n2 + nα)

n−1∏
i=1

�(i + α)

�(i)∫
MH

n

det(A)α dµH(A) = �(2n2 − n)

�(2n − 1)

�(2n + α − 1)

�(2n2 − n + αn)

n−1∏
i=1

�(2i − 1 + α)

�(2i − 1)
.

The volume of MC
n was computed by Zyczkowski and Sommers with respect to the

Hilbert–Schmidt measure [28]. They used some elements of the theory of random matrices,
for example, Hall’s joint probability distribution [10] and some integral formulae from the
book of Mehta [13]. The parametrization of the state space MC

n in their approach is

D = 1

n
I +

n2−1∑
k=1

τkλk,

where (λk)k=1,...,n2−1 are the traceless self-adjoint generators of SU(n), which fulfill the
normalization Tr λkλl = δkl , (τk)k=1,...,n2−1 are the real parameters, and I denotes the identity
matrix. In this setting, the parametrization of the space MC

2 is the following:


1

2
+

z√
2

x√
2

+ i
y√
2

x√
2

− i
y√
2

1

2
− z√

2




A matrix given by the above formula is a state if and only if x2 + y2 + z2 � 1/
√

2. In this
setting, the volume of the space of complex qubits is

V (Z.S.)
(
MC

2

) =
√

2π

3

and, in general, the volume of MC
n is given by equation (4.5) in [28]:

V (Z.S.)(MC

n

) = √
n2

n(n−1)

2
π

n(n−1)

2

(n2 − 1)!

n−1∏
i=1

i!.

The difference between this and our result is given by the next equation.

V (Z.S.)
(
MC

n

)
V
(
MC

n

) = √
n2

n(n−1)

2 .

The difference in the normalization factor can be understood by the decomposition of the
Hilbert–Schimdt measure according to equation (3.7) in [28]:

dVHS = dµ(	1,	2, . . . , 	n) × dνHaar,

where the first factor depends on the eigenvalues (	i)i=1,...,n of the state and νHaar is a Haar
measure on the unitary group. This parametrization causes a normalization factor

2
n(n−1)

2
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in the Haar measure with respect to the Lebesgue measure according to equation (A3) in [28].
The Riemannian metric induced by the Hilbert–Schmidt measure on the (n − 1)-dimensional
simplex (	i)i=1,...,n has determinant n according to the conclusion after equation (3.5) in [28].
Since the volume element gains with the square root of the determinant of the Riemannian
metric, it gives the normalization factor

√
n. It means that our result is fully compatible with

the computation given by Zyczkowski and Sommers.

3. Volume of the state space endowed with Riemannian metrics

To simplify the notations, the set of real or complex self-adjoint matrices will be denoted by
Mn, the set of traceless real or complex self-adjoint matrices will be denoted by M(0)

n and the
set of real or complex states by Mn. The space Mn has a natural differentiable structure; the
tangent space TD at D ∈ Mn can be identified with Mn. The space Mn can be endowed with
a differentiable structure too [11] and the tangent space TD at D ∈ Mn can be identified with
M(0)

n .
A map

g : Mn × M(0)
n × M(0)

n → C (D,X, Y ) 	→ gD(X, Y )

will be called a Riemannian metric if the following condition holds. For all D ∈ Mn, the map

gD : M(0)
n × M(0)

n → C (X, Y ) 	→ gD(X, Y )

is a scalar product and for all X ∈ M(0)
n , the map

g·(X,X) : Mn → C D 	→ gD(X,X)

is smooth. We now use differential geometrical notation to define the volume of the
Riemannian manifold (Mn, g). In this case, the Riemannian metric is a

g : Mn → LIN
(
M(0)

n × M(0)
n , R

)
D 	→ ((X, Y ) 	→ KD(X, Y ))

map, where LIN(U, V ) denotes the set of linear maps from the vector space U to the vector
space V . From the metric g, we can construct the function

det(g) : Mn → R

which is strictly positive at every point, since for every D ∈ Mn the map g(D) defines a scalar
product on the vector space TD . The volume of a Riemannian manifold (Mn, g) is defined as∫

Mn

√
det(g(D)) dλdim(Mn)(D).

The volume of the manifold is invariant with respect to the parametrization.
Čencov and Morozova [6, 15] were the first to study the monotone metrics on classical

statistical manifolds. They proved that such a metric is unique, up to normalization. The
noncommutative extension of the Čencov theorem was given by Petz [16]. Stochastic maps
are the counterpart of Markovian maps in this setting. A linear map between matrix spaces
T : Mn → Mm is called a stochastic map if it is trace preserving and completely positive.

Theorem 5. Consider the family of Riemannian manifolds (Mn, gn)n∈N. If for every stochastic
map T : Mn → Mm the following monotonicity property holds

gT (D)(T (X), T (X)) � gD(X,X) ∀D,X ∈ Mn,

then there exists an operator monotone function f : R
+ → R with the property f (x) =

xf (x−1), such that

gD(X, Y ) = Tr
(
X
(
R

1
2
n,Df (Ln,DR−1

n,D)R
1
2
n,D

)−1
(Y )
)
,

for all n ∈ N where Ln,D(X) = DX,Rn,D(X) = XD for all D,X ∈ Mn.
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These metrics are considered as the noncommutative generalizations of the Fisher
information. These metrics are called monotone metrics. It means that there exists a bijective
mapping between the monotone family of metrics and some operator monotone functions. We
use the normalization condition f (1) = 1 for the function f in the previous theorem.

Let D ∈ Mn and choose a basis of R
n such that D = ∑n

j=1 µjEjj is diagonal, where
(Ejk)1�j,k�n is the usual system of matrix units. Let us define the following self-adjoint
matrices:

Fjk = Ejk + Ekj 1 � j � k � n

Hjk = i Ejk − i Ekj 1 � j < k � n.

The set of matrices (Fij )1�i�j�n ∪ (Hij )1�i<j�n form a basis of the tangent space at D for
complex matrices and (Fij )1�i�j�n form a basis for real ones. We have for the metric from
[14] that

if 1 � i < j � n, 1 � k < l � n :




g(D)(Hij ,Hkl) = δikδjl2m(µi, µj )

g(D)(Fij , Fkl) = δikδjl2m(µi, µj )

g(D)(Hij , Fkl) = 0,

if 1 � i < j � n, 1 � k � n : g(D)(Hij , Fkk) = g(D)(Fij , Fkk) = 0,

if 1 � i � n, 1 � k � n : g(D)(Fii, Fkk) = δik4m(µi, µi),

where

m(µi, µj ) = 1

µjf
(

µi

µj

) .
We use the canonical parametrization for the off-diagonal elements of Mn and

(x1, . . . , xn−1, 1 − (x1 + · · · + xn−1)) for the diagonal ones. The corresponding tangent
vectors for the diagonal coordinates are Ai = Eii − Enn for i = 1, . . . , n − 1. Since
g(D)(Ai, Aj ) = g(D)(Eii, Ejj ) + g(D)(Enn, Enn) = δij

1
µi

+ 1
µn

, the determinant of the
metric is

det(g(D)) =

 ∏

1�i<j�n

2mij


ϕ if D ∈ MR

n

det(g(D)) =

 ∏

1�i<j�n

4m2
ij


ϕ if D ∈ MC

n ,

where ϕ is a determinant of an (n − 1) × (n − 1) matrix:

ϕ = det




1
µ1

+ 1
µn

1
µn

. . . 1
µn

1
µn

1
µ2

+ 1
µn

. . . 1
µn

...
...

. . .
...

1
µn

1
µn

. . . 1
µn−1

+ 1
µn


 = 1

det(D)
.
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Theorem 6. The volume of the real and complex state space endowed with a Riemannian
metric which is generated by the operator monotone function f is

V
(
MR

n , gf

) = 2
n(n−1)

4

∫
MR

n

1√
det(D)


 ∏

1�i<j�n

m(µi(D), µj (D))
1
2


 dλdim(MR

n )(D)

V
(
MC

n , gf

) = 2
n(n−1)

2

∫
MC

n

1√
det(D)


 ∏

1�i<j�n

m(µi(D), µj (D))


 dλdim(MC

n )(D).

Consider the operator monotone function f1(x) = (1 + x)/2 which generates the Bures
metric. In this case, the volume of the complex state space was computed by Sommers
and Zyczkowski [26]. There is a conjecture about the volume of the complex state when it is
endowed by the Kubo–Mori metric, which is generated by the function f2(x) = (x−1)/ log x.
Slater conjectured [25] on the basis of numerical evidence that

V
(
MC

n , gf2

) = 2
n(n−1)

2 V
(
MC

n , gf1

)
.

We can endow the Riemannian space with a pull-back metric too. Consider the functions
h : ]0, 1[ → R with analytic continuation on a neighbourhood of the ]0, 1[ interval and suppose
that h′(x) �= 0 for every x ∈ ]0, 1[. We call such functions admissible functions. The space
Mn will geometrically be considered a Riemannian space (Rd , gE), where dR = (n−1)(n+2)

2 for
real matrices and dC = n2 − 1 for complex ones and gE is the canonical Riemannian metric
on Mn. That is, at every point D ∈ Mn for every vectors X, Y ∈ Mn in the tangent space at
D the metric is

gE(D)(X, Y ) = Tr XY.

For an admissible function h : ]0, 1[ → R, the pull-back geometry of the spaces MR
n and MC

n

is the Riemannian geometry gh induced by the map

φh,n : Mn → Mn D 	→ h(D).

This Riemannian space will be denoted by (Mn, gh).
For example, if the functions h are p p

√
x if p �= 0 or log x, then we get the α-geometries

[7, 9].
If D ∈ Mn is diagonal, i.e. D =∑n

i=1 µiEii , then the metric can be computed (see [4])
as

if 1 � i < j � n, 1 � k < l � n :




g(D)(Hij ,Hkl) = δikδjl2M(µi, µj )
2

g(D)(Fij , Fkl) = δikδjl2M(µi, µj )
2

g(D)(Hij , Fkl) = 0,

if 1 � i < j � n, 1 � k � n : g(D)(Hij , Fkk) = g(D)(Fij , Fkk) = 0,

if 1 � i � n, 1 � k � n : g(D)(Fii, Fkk) = δik4M(µi, µi)
2,

where

M(µi, µj ) =



h(µi) − h(µj )

µi − µj

if µi �= µj

h′(µi) if µi = µj .

Using the previous considerations about the volume of the state space, we have the following
theorem.
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Theorem 7. The volume of the real and complex state space endowed with a pull-back metric
gh is

V
(
MR

n

) = 2
n(n−1)

4

∫
MR

n

√√√√√
n∑

i=1

n∏
j=1
j �=i

h′(µj )


 ∏

1�i<j�n

M(µi(D), µj (D))


 dλdim(MR

n )(D)

V
(
MC

n

) = 2
n(n−1)

2

∫
MC

n

√√√√√
n∑

i=1

n∏
j=1
j �=i

h′(µj )


 ∏

1�i<j�n

M(µi(D), µj (D))




2

dλdim(MC
n )(D).

4. Volume of the state space of qubits

In the space of qubits we choose the Stokes parametrization, i.e. we write a state D ∈ M2 in
the form

D = 1

2

(
1 + x y + i z
y + i z 1 − x

)
.

Using these coordinates, the spaces MC

2 and MR

2 can be identified with the unit ball in the
Euclidean spaces R

3 and R
2. The metric gf which is generated by an operator monotone

function in this coordinate system is

gf (x, y, z) =




1
4λ1λ2

0 0

0 m(λ1,λ2)

2 0
0 0 m(λ1,λ2)

2


 gf (x, y) =

(
1

4λ1λ2
0

0 m(λ1,λ2)

2

)
.

The volume is an integral on the unit ball, which is in spherical and polar coordinates

V
(
MC

2

) = 4π

∫ 1

0

r2

√
1 − r2(1 + r)f

(
1−r
1+r

)dr,

V
(
MR

2

) = 2π

∫ 1

0

r
√

1 − r(1 + r)

√
f
(

1−r
1+r

)dr,

respectively.

Corollary 1. The volume of the space (M2, gf ) where the metric gf is generated by an
operator monotone function f is

V
(
MC

2

) = 2π

∫ 1

0

(
1 − t

1 + t

)2 1√
tf (t)

dt

V
(
MR

2

) =
√

2π

∫ 1

0

1 − t

1 + t

1√
t + t2

√
f (t)

dt.
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Here are some operator monotone functions which generate monotone metrics from
[3, 16, 17] and the corresponding volumes:

f (x) : V
(
MC

2

)
: V

(
MR

2

)
:

1 + x

2
π2 2π

2x

1 + x
∞ ∞

x − 1

log x
2π2 ∼ 8.298

√
x ∞ 4π

1

4
(
√

x + 1)2 4π(π − 2) 4π(2 − √
2)

2
√

x(x − 1)

(1 + x) log x
∞ ∼19.986

2(x − 1)2

(1 + x)(log x)2

π4

2
∼11.51

x

2

(
1

αx + 1 − α
+

1

(1 − α)x + α

)
∞ ∞

2

x + 1
(βx + 1 − β)((1 − β)x + β) π2 1 − 2

√
β − β2

(1 − 2β)2
√

β − β2
? < ∞

2x
γ +

1

2

1 + x2γ
∞ ? < ∞.

The parameters lie in the interval α ∈ ]0, 1
2

]
, β ∈ ]0, 1

2

[
and γ ∈ [0, 1

2

]
. We have some open

questions about this list. For every function in this list the complex state space has a greater
volume; a natural question is: is this necessary? It seems that if for a function f the volume
V
(
MC

2

)
is finite, then for the transpose function f ⊥(x) = x

f (x)
the volume is infinity, except

for the function f (x) = √
x; in this case f = f ⊥. Is this true in general? For some functions,

the difference between the volumes is infinity. What can be the statistical meaning of this
phenomenon?

The origin of the infinite volume of the space MC

2 can be understood partially by the help
of a representation theorem for operator monotone functions. This representation theorem is
due to Löwner [12], but we use a modified version from [8].

Theorem 8. The map µ 	→ f , defined by

f (x) =
∫ 1

0

x

(1 − t)x + t
dµ(t), for x > 0,

establishes a bijection between the class of positive Radon measures on [0, 1] and the class of
operator monotone functions. The function f fulfills the condition f (x) = xf (x−1) for every
positive x if and only if for every s ∈ [0, 1] the equality µ([0, s]) = µ([1 − s, 1]) holds.

If f is an operator monotone function, then its transpose f ⊥ is monotone too [5]. That
is, 1/f (x) can also be written in the form∫ 1

0

1

(1 − t)x + t
dµ(t),
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where µ is a probability measure on [0, 1] with the symmetric property µ([0, s]) =
µ([1 − s, 1]). Substituting this representation of f into the volume formula for MC

2 , we
have that if µ is the corresponding symmetric measure for the function f ⊥, then the volume
of the manifold

(
MC

2 , gf

)
is

V =
∫ 1

0

2

2z − 1
− π

(2z − 1)2
+

arccos(2z − 1)

(2z − 1)2
√

z − z2
dµ(z).

The integrand is continuous, monotonically decreasing and has a series expansion

π
1√
z

− (4 + π) +
9π

2

√
z − 4

(
10

3
+ π

)
z + · · ·

near the origin. Its integral with respect to a symmetric probability measure is infinity if and
only if ∫ 1

0

1√
z

dµ(z) = ∞

holds. So the volume of the complex state space of qubits is infinity if the metric is generated
by a symmetric probability measure which is concentrated in some sense at the ends of the
interval [0, 1].

If we consider the space of qubits with a pull-back metric, then we have the following
corollary by using the above-mentioned techniques.

Corollary 2. For an admissible function f , let us consider the real and complex space M2

with the pull-back metric. The volume of this space is the following:

V
(
MR

2

) = π√
2

∫ 1

0

√
f ′
(

1 + r

2

)2

+ f ′
(

1 − r

2

)2 (
f

(
1 + r

2

)
− f

(
1 − r

2

))
dr

V
(
MC

2

) = π

∫ 1

0

√
f ′
(

1 + r

2

)2

+ f ′
(

1 − r

2

)2 (
f

(
1 + r

2

)
− f

(
1 − r

2

))2

dr.
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Appendix A. Volume of the state space

Theorem 1. For every k ∈ N, the volume of the state spaces MR

2k and MR

2k+1 are

V
(
MR

2k

) = πk2

2k2+k

(2k)!

k!(2k2 + k − 1)!

k−1∏
i=1

(2i)!

V
(
MR

2k+1

) =
(π

2

)k2+k (2k)!

(k − 1)!(2k2 + 3k)!

k−1∏
i=1

(2i)!.

Proof. A self-adjoint n × n matrix with real entries A is in MR
n if and only if

∀i ∈ {1, . . . , n} : det(Ai) > 0,

n∑
k=1

ak = 1,
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where (ai)i=1,...,n are the diagonal elements of A. First we assume that the matrix of the
diagonal elements D is given. If An−1 is fixed, then

V (An−1) =
∫

ER

n−1(Tn−1,an det(An−1))

1 dλn−1 = a(n−1)/2
n Fn−2Gn−2,0

√
det(An−1).

If An−2 is fixed, then

V (An−2) =
∫

ER

n−2(Tn−2,an−1 det(An−2))

V (An−1) dλn−2

= a
n−1

2
n Fn−2Gn−2,0

∫
ER

n−2(Tn−2,an−1 det(An−2))

(an−1 det(An−2) − 〈x, Tn−2x〉) 1
2 dλn−2(x)

= a
n−1

2
n−1a

n−1
2

n Fn−2Fn−3Gn−2,0Gn−3,1/2 det(An−2).

In general if An−k is fixed, then

V (An−k) =
k∏

i=1

(
a

(n−1)/2
n+1−i Fn−1−iGn−1−i,(i−1)/2

)
det(An−k)

k
2 ,

because this equation is correct for k = 1 and by induction∫
ER

n−k−1(Tn−k−1,an−k det(An−k−1))

V (An−k) dλn−k−1 =
k∏

i=1

(
a

(n−1)/2
n+1−i Fn−1−iGn−1−i,(i−1)/2

)

×
∫

ER

n−k−1(Tn−k−1,an−k det(An−k−1))

(an−k det(An−k−1) − 〈x, Tn−k−1x〉) k
2 dλn−k−1(x)

=
k∏

i=1

(
a

(n−1)/2
n+1−i Fn−1−iGn−1−i,(i−1)/2

)
× a

(n−1)/2
n−k Fn−k−2Gn−k−2,k/2 det(An−k−1)

k+1
2 = V (An−k−1).

It means that

V (A1) =
(

n−2∏
i=0

Fi

)(
n−1∏
i=1

Gn−1−i,(i−1)/2

)(
n∏

i=1

an

)(n−1)/2

.

So the volume of the real state space is

V
(
MR

n

) =
(

n−1∏
i=1

Fi−1Gn−1−i,(i−1)/2

)∫
�n−1

(
n∏

i=1

an

)(n−1)/2

dλn−1(a).

The integral in this equation is

�
(

n+1
2

)n
�
(

n2+n
2

)
and the product is

ϕ =
(

n−1∏
i=1

Fi−1Gn−1−i,(i−1)/2

)
= π

n2−n
4

2n−1

(n − 1)!

�
(

n+1
2

)n−1

n−1∏
i=1

�
(

i+1
2

)
�
(

n−i
2

)
�
(

i
2 + 1

) .

If n = 2k + 1, then

ϕ = πk2+ k
2

22k

(2k)!

(k!)2k+1

2k∏
i=1

�

(
i

2

)
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which can be simplified using the equality �(i)�(i + 1/2) =
√

π(2i)!

22i i
to

ϕ =
(π

2

)k2+k k(2k)!

(k!)2k+2

k−1∏
i=1

(2i)!.

If n = 2k, then using the same identity for the function �, we have

ϕ = πk2−k23k2−k

(
k!

(2k)!

)2k−1 k−1∏
i=1

(2i)!.
�

Theorem 2. For every n ∈ N, the volume of the state space MC
n is

V
(
MC

n

) = π
n(n−1)

2

(n2 − 1)!

n−1∏
i=1

i!.

Proof. The proof is similar to the real case, except that we have to take into account that the
dimension of the parameter space of a matrix element Aij for i �= j indices is 2. If An−1 is
fixed, then

V (An−1) =
∫

EC

2n−2(Tn−1,an det(An−1))

1 dλ2n−2 = an−1
n F2n−3G2n−3,0 det(An−1)

and in general if An−k is fixed, then

V (An−k) =
k∏

i=1

(
an−1

n+1−iF2n−1−2iG2n−1−2i,i−1
)

det(An−k)
k.

The volume of the complex state space is

V
(
MC

n

) =
(

n−1∏
i=1

F2i−1G2n−1−2i,i−1

)∫
�n−1

(
n∏

i=1

an

)n−1

dλn−1(a),

where the product is

π
n2−n

2

((n − 1)!)n

n−1∏
i=1

i!

and the integral is

((n − 1)!)n

(n2 − 1)!
.

�

Theorem 3. For every n ∈ N, the volume of the state space MH
n is

V
(
MH

n

) = (2n − 2)!πn2−n

(2n2 − n − 1)!

n−2∏
i=1

(2i)!.

Proof. If An−1 is fixed, then

V (An−1) = a2n−2
n F4n−5G4n−5,0 det(An−1)

2

and in general if An−k is fixed, then

V (An−k) =
k∏

i=1

(
a2n−2

n+1−iF4n−1−4iG4n−1−4i,2i−2
)

det(An−k)
2k.
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The volume of the quaternionic state space is

V
(
MH

n

) =
(

n−1∏
i=1

F4i−1G4n−1−4i,2i−2

)∫
�n−1

(
n∏

i=1

an

)2n−2

dλn−1(a),

where the product is

πn2−n

((2n − 2)!)n−1

n−1∏
i=1

(2i − 2)!

and the integral is

((2n − 2)!)n

(2n2 − n − 1)!
. �

Theorem 4. For every parameter α ∈ R
+ and n ∈ N the expected value of the function detα

on the state spaces MR
n ,MC

n and MH
n with respect to the normalized Lebesgue measures

µR, µC and µH are∫
MR

n

det(A)α dµR(A) = �
(

n2+n
2

)
�
(

n+1
2

) �
(

n+1
2 + α

)
�
(

n2+n
2 + nα

) n−1∏
i=1

�
(

i+1
2 + α

)
�
(

i+1
2

)
∫
MC

n

det(A)α dµC(A) = (n2 − 1)!

(n − 1)!

�(n + α)

�(n2 + nα)

n−1∏
i=1

�(i + α)

�(i)∫
MH

n

det(A)α dµH(A) = �(2n2 − n)

�(2n − 1)

�(2n + α − 1)

�(2n2 − n + αn)

n−1∏
i=1

�(2i − 1 + α)

�(2i − 1)
.

Proof. The proofs are similar, so we just prove the theorem for the real case only. First we
compute the integral with respect to the Lebesgue measure, and we divide the result with the
volume of the state space. The method is the same as in the previous theorems, so if An−1 is
given, then

V (An−1) =
∫

ER

n−1(Tn−1,an det(An−1))

det(An)
α dλn−1

=
∫

ER

n−1(Tn−1,an det(An−1))

(an det(An−1) − 〈x, Tn−1x〉)α dλn−1(x)

= a(n−1)/2+α
n Fn−2Gn−2,α det(An−1)

1
2 +α,

and the general formula is

V (An−k) =
k∏

i=1

(
a

(n−1)/2+α

n+1−i Fn−1−iGn−1−i,(i−1)/2+α

)
det(An−k)

k
2 +α.

The integral of the function detα with respect to the Lebesgue measure is

∫
MR

n

det(A)α dλdim(MR
n )(A) =

(
n−1∏
i=1

Fi−1Gn−1−i,(i−1)/2+α

)∫
�n−1

(
n∏

i=1

an

) n−1
2 +α

dλn−1(a).

Dividing it with V
(
MR

n

)
and after some simplification, we get the formula which is in the

theorem. �
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